SQL Data Types
MySQL Data Types
In MySQL there are three main types : text, number, and Date/Time types.Text types:
Data type
|
Description
|
---|---|
CHAR(size)
|
Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis. Can store up to 255 characters
|
VARCHAR(size)
|
Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis. Can store up to 255 characters. Note: If you put a greater value than 255 it will be converted to a TEXT type
|
TINYTEXT
|
Holds a string with a maximum length of 255 characters
|
TEXT
|
Holds a string with a maximum length of 65,535 characters
|
BLOB
|
For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data
|
MEDIUMTEXT
|
Holds a string with a maximum length of 16,777,215 characters
|
MEDIUMBLOB
|
For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of data
|
LONGTEXT
|
Holds a string with a maximum length of 4,294,967,295 characters
|
LONGBLOB
|
For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of data
|
ENUM(x,y,z,etc.)
|
Let you enter a list of possible values. You can list up to 65535 values in an ENUM list. If a value is inserted that is not in the list, a blank value will be inserted.
Note: The values are sorted in the order you enter them.
You enter the possible values in this format: ENUM('X','Y','Z')
|
SET
|
Similar to ENUM except that SET may contain up to 64 list items and can store more than one choice
|
Data type
|
Description
|
---|---|
TINYINT(size)
|
-128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits may be specified in parenthesis
|
SMALLINT(size)
|
-32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number of digits may be specified in parenthesis
|
MEDIUMINT(size)
|
-8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum number of digits may be specified in parenthesis
|
INT(size)
|
-2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The maximum number of digits may be specified in parenthesis
|
BIGINT(size)
|
-9223372036854775808 to 9223372036854775807 normal. 0 to 18446744073709551615 UNSIGNED*. The maximum number of digits may be specified in parenthesis
|
FLOAT(size,d)
|
A small number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
|
DOUBLE(size,d)
|
A large number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
|
DECIMAL(size,d)
|
A DOUBLE stored as a string , allowing for a fixed decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
|
Date types:
Data type
|
Description
|
---|---|
DATE()
|
A date. Format: YYYY-MM-DD
Note: The supported range is from '1000-01-01' to '9999-12-31'
|
DATETIME()
|
*A date and time combination. Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
|
TIMESTAMP()
|
*A timestamp. TIMESTAMP values are stored as the number of seconds since the Unix epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07' UTC
|
TIME()
|
A time. Format: HH:MM:SS
Note: The supported range is from '-838:59:59' to '838:59:59'
|
YEAR()
|
A year in two-digit or four-digit format.
Note: Values allowed in four-digit format: 1901 to 2155. Values allowed in two-digit format: 70 to 69, representing years from 1970 to 2069
|
SQL Functions
SQL has many built-in functions for performing calculations on data.SQL Aggregate Functions
SQL aggregate functions return a single value, calculated from values in a column.Useful aggregate functions:
- AVG() - Returns the average value
- COUNT() - Returns the number of rows
- FIRST() - Returns the first value
- LAST() - Returns the last value
- MAX() - Returns the largest value
- MIN() - Returns the smallest value
- SUM() - Returns the sum
SQL Scalar functions
SQL scalar functions return a single value, based on the input value.Useful scalar functions:
- UCASE() - Converts a field to upper case
- LCASE() - Converts a field to lower case
- MID() - Extract characters from a text field
- LEN() - Returns the length of a text field
- ROUND() - Rounds a numeric field to the number of decimals specified
- NOW() - Returns the current system date and time
- FORMAT() - Formats how a field is to be displayed
SQL AVG() Function
The AVG() Function
The AVG() function returns the average value of a numeric column.SQL AVG() Syntax
SELECT AVG(column_name) FROM table_name
SQL AVG() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT AVG(OrderPrice) AS OrderAverage FROM Orders
The result-set will look like this:
OrderAverage
|
---|
950 |
We use the following SQL statement:
SELECT Customer FROM Orders
WHERE OrderPrice>(SELECT AVG(OrderPrice) FROM Orders)
The result-set will look like this:
Customer
|
---|
Hansen |
Nilsen |
Jensen |
SQL COUNT() Function
The COUNT() function returns the number of rows that matches a specified criteria.SQL COUNT(column_name) Syntax
The COUNT(column_name) function returns the number of values (NULL values will not be counted) of the specified column:SELECT COUNT(column_name) FROM table_name
SQL COUNT(*) Syntax
The COUNT(*) function returns the number of records in a table:SELECT COUNT(*) FROM table_name
SQL COUNT(DISTINCT column_name) Syntax
The COUNT(DISTINCT column_name) function returns the number of distinct values of the specified column:SELECT COUNT(DISTINCT column_name) FROM table_name
Note: COUNT(DISTINCT) works with ORACLE and Microsoft SQL Server, but not with Microsoft Access.
SQL COUNT(column_name) Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT COUNT(Customer) AS CustomerNilsen FROM Orders
WHERE Customer='Nilsen'
The result of the SQL statement above will be 2, because the customer Nilsen has made 2 orders in total:
CustomerNilsen
|
---|
2 |
SQL COUNT(*) Example
If we omit the WHERE clause, like this:SELECT COUNT(*) AS NumberOfOrders FROM Orders
The result-set will look like this:
NumberOfOrders
|
---|
6 |
SQL COUNT(DISTINCT column_name) Example
Now we want to count the number of unique customers in the "Orders" table.We use the following SQL statement:
SELECT COUNT(DISTINCT Customer) AS NumberOfCustomers FROM Orders
The result-set will look like this:
NumberOfCustomers
|
---|
3 |
SQL FIRST() Function
The FIRST() Function
The FIRST() function returns the first value of the selected column.SQL FIRST() Syntax
SELECT FIRST(column_name) FROM table_name
SQL FIRST() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT FIRST(OrderPrice) AS FirstOrderPrice FROM Orders

SELECT OrderPrice FROM Orders ORDER BY O_Id LIMIT 1
The result-set will look like this:
FirstOrderPrice
|
---|
1000 |
SQL LAST() Function
The LAST() Function
The LAST() function returns the last value of the selected column.SQL LAST() Syntax
SELECT LAST(column_name) FROM table_name
SQL LAST() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT LAST(OrderPrice) AS LastOrderPrice FROM Orders

SELECT OrderPrice FROM Orders ORDER BY O_Id DESC LIMIT 1
The result-set will look like this:
LastOrderPrice
|
---|
100 |
SQL MAX() Function
The MAX() Function
The MAX() function returns the largest value of the selected column.SQL MAX() Syntax
SELECT MAX(column_name) FROM table_name
SQL MAX() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT MAX(OrderPrice) AS LargestOrderPrice FROM Orders
The result-set will look like this:
LargestOrderPrice
|
---|
2000 |
SQL MIN() Function
The MIN() Function
The MIN() function returns the smallest value of the selected column.SQL MIN() Syntax
SELECT MIN(column_name) FROM table_name
SQL MIN() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT MIN(OrderPrice) AS SmallestOrderPrice FROM Orders
The result-set will look like this:
SmallestOrderPrice
|
---|
100 |
SQL SUM() Function
The SUM() Function
The SUM() function returns the total sum of a numeric column.SQL SUM() Syntax
SELECT SUM(column_name) FROM table_name
SQL SUM() Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT SUM(OrderPrice) AS OrderTotal FROM Orders
The result-set will look like this:
OrderTotal
|
---|
5700 |
SQL GROUP BY Statement
Aggregate functions often need an added GROUP BY statement.The GROUP BY Statement
The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set by one or more columns.SQL GROUP BY Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
FROM table_name
WHERE column_name operator value
GROUP BY column_name
SQL GROUP BY Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We will have to use the GROUP BY statement to group the customers.
We use the following SQL statement:
SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer
The result-set will look like this:
Customer
|
SUM(OrderPrice)
|
---|---|
Hansen | 2000 |
Nilsen | 1700 |
Jensen | 2000 |
Let's see what happens if we omit the GROUP BY statement:
SELECT Customer,SUM(OrderPrice) FROM Orders
The result-set will look like this:
Customer
|
SUM(OrderPrice)
|
---|---|
Hansen | 5700 |
Nilsen | 5700 |
Hansen | 5700 |
Hansen | 5700 |
Jensen | 5700 |
Nilsen | 5700 |
Explanation of why the above SELECT statement cannot be used: The SELECT statement above has two columns specified (Customer and SUM(OrderPrice). The "SUM(OrderPrice)" returns a single value (that is the total sum of the "OrderPrice" column), while "Customer" returns 6 values (one value for each row in the "Orders" table). This will therefore not give us the correct result. However, you have seen that the GROUP BY statement solves this problem.
GROUP BY More Than One Column
We can also use the GROUP BY statement on more than one column, like this:
SELECT Customer,OrderDate,SUM(OrderPrice) FROM Orders
GROUP BY Customer,OrderDate
GROUP BY Customer,OrderDate
SQL HAVING Clause
The HAVING Clause
The HAVING clause was added to SQL because the WHERE keyword could not be used with aggregate functions.SQL HAVING Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value
SQL HAVING Example
We have the following "Orders" table:
O_Id
|
OrderDate
|
OrderPrice
|
Customer
|
---|---|---|---|
1 | 2008/11/12 | 1000 | Hansen |
2 | 2008/10/23 | 1600 | Nilsen |
3 | 2008/09/02 | 700 | Hansen |
4 | 2008/09/03 | 300 | Hansen |
5 | 2008/08/30 | 2000 | Jensen |
6 | 2008/10/04 | 100 | Nilsen |
We use the following SQL statement:
SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer
HAVING SUM(OrderPrice)<2000
The result-set will look like this:
Customer
|
SUM(OrderPrice)
|
---|---|
Nilsen | 1700 |
We add an ordinary WHERE clause to the SQL statement:
SELECT Customer,SUM(OrderPrice) FROM Orders
WHERE Customer='Hansen' OR Customer='Jensen'
GROUP BY Customer
HAVING SUM(OrderPrice)>1500
The result-set will look like this:
Customer
|
SUM(OrderPrice)
|
---|---|
Hansen | 2000 |
Jensen | 2000 |
SQL UCASE() Function
The UCASE() Function
The UCASE() function converts the value of a field to uppercase.SQL UCASE() Syntax
SELECT UCASE(column_name) FROM table_nameSyntax for SQL Server
SELECT UPPER(column_name) FROM table_name
SQL UCASE() Example
We have the following "Persons" table:
P_Id
|
LastName
|
FirstName
|
Address
|
City
|
---|---|---|---|---|
1 | Hansen | Ola | Timoteivn 10 | Sandnes |
2 | Svendson | Tove | Borgvn 23 | Sandnes |
3 | Pettersen | Kari | Storgt 20 | Stavanger |
We use the following SELECT statement:
SELECT UCASE(LastName) as LastName,FirstName FROM Persons
The result-set will look like this:
LastName
|
FirstName
|
---|---|
HANSEN | Ola |
SVENDSON | Tove |
PETTERSEN | Kari |
SQL LCASE() Function
The LCASE() Function
The LCASE() function converts the value of a field to lowercase.SQL LCASE() Syntax
SELECT LCASE(column_name) FROM table_nameSyntax for SQL Server
SELECT LOWER(column_name) FROM table_name
SQL LCASE() Example
We have the following "Persons" table:
P_Id
|
LastName
|
FirstName
|
Address
|
City
|
---|---|---|---|---|
1 | Hansen | Ola | Timoteivn 10 | Sandnes |
2 | Svendson | Tove | Borgvn 23 | Sandnes |
3 | Pettersen | Kari | Storgt 20 | Stavanger |
We use the following SELECT statement:
SELECT LCASE(LastName) as LastName,FirstName FROM Persons
The result-set will look like this:
LastName
|
FirstName
|
---|---|
hansen | Ola |
svendson | Tove |
pettersen | Kari |
SQL MID() Function
The MID() Function
The MID() function is used to extract characters from a text field.SQL MID() Syntax
SELECT MID(column_name,start[,length]) FROM table_name
Parameter
|
Description
|
---|---|
column_name | Required. The field to extract characters from |
start | Required. Specifies the starting position (starts at 1) |
length | Optional. The number of characters to return. If omitted, the MID() function returns the rest of the text |
SQL MID() Example
We have the following "Persons" table:
P_Id
|
LastName
|
FirstName
|
Address
|
City
|
---|---|---|---|---|
1 | Hansen | Ola | Timoteivn 10 | Sandnes |
2 | Svendson | Tove | Borgvn 23 | Sandnes |
3 | Pettersen | Kari | Storgt 20 | Stavanger |
We use the following SELECT statement:
SELECT MID(City,1,4) as SmallCity FROM Persons
The result-set will look like this:
SmallCity
|
---|
Sand |
Sand |
Stav |
SQL LEN() Function
The LEN() Function
The LEN() function returns the length of the value in a text field.SQL LEN() Syntax
SELECT LEN(column_name) FROM table_name
SQL LEN() Example
We have the following "Persons" table:
P_Id
|
LastName
|
FirstName
|
Address
|
City
|
---|---|---|---|---|
1 | Hansen | Ola | Timoteivn 10 | Sandnes |
2 | Svendson | Tove | Borgvn 23 | Sandnes |
3 | Pettersen | Kari | Storgt 20 | Stavanger |
We use the following SELECT statement:
SELECT LEN(Address) as LengthOfAddress FROM Persons
The result-set will look like this:
LengthOfAddress
|
---|
12 |
9 |
9 |
SQL ROUND() Function
The ROUND() Function
The ROUND() function is used to round a numeric field to the number of decimals specified.SQL ROUND() Syntax
SELECT ROUND(column_name,decimals) FROM table_name
Parameter
|
Description
|
---|---|
column_name | Required. The field to round. |
decimals | Required. Specifies the number of decimals to be returned. |
SQL ROUND() Example
We have the following "Products" table:
Prod_Id
|
ProductName
|
Unit
|
UnitPrice
|
---|---|---|---|
1 | Jarlsberg | 1000 g | 10.45 |
2 | Mascarpone | 1000 g | 32.56 |
3 | Gorgonzola | 1000 g | 15.67 |
We use the following SELECT statement:
SELECT ProductName, ROUND(UnitPrice,0) as UnitPrice FROM Products
The result-set will look like this:
ProductName
|
UnitPrice
|
---|---|
Jarlsberg | 10 |
Mascarpone | 33 |
Gorgonzola | 16 |
SQL NOW() Function
The NOW() Function
The NOW() function returns the current system date and time.SQL NOW() Syntax
SELECT NOW() FROM table_name
SQL NOW() Example
We have the following "Products" table:
Prod_Id
|
ProductName
|
Unit
|
UnitPrice
|
---|---|---|---|
1 | Jarlsberg | 1000 g | 10.45 |
2 | Mascarpone | 1000 g | 32.56 |
3 | Gorgonzola | 1000 g | 15.67 |
We use the following SELECT statement:
SELECT ProductName, UnitPrice, Now() as PerDate FROM Products
The result-set will look like this:
ProductName
|
UnitPrice
|
PerDate
|
---|---|---|
Jarlsberg | 10.45 | 10/7/2008 11:25:02 AM |
Mascarpone | 32.56 | 10/7/2008 11:25:02 AM |
Gorgonzola | 15.67 | 10/7/2008 11:25:02 AM |
SQL FORMAT() Function
The FORMAT() Function
The FORMAT() function is used to format how a field is to be displayed.SQL FORMAT() Syntax
SELECT FORMAT(column_name,format) FROM table_name
Parameter
|
Description
|
---|---|
column_name | Required. The field to be formatted. |
format | Required. Specifies the format. |
SQL FORMAT() Example
We have the following "Products" table:
Prod_Id
|
ProductName
|
Unit
|
UnitPrice
|
---|---|---|---|
1 | Jarlsberg | 1000 g | 10.45 |
2 | Mascarpone | 1000 g | 32.56 |
3 | Gorgonzola | 1000 g | 15.67 |
We use the following SELECT statement:
SELECT ProductName, UnitPrice, FORMAT(Now(),'YYYY-MM-DD') as PerDate
FROM Products
The result-set will look like this:
ProductName
|
UnitPrice
|
PerDate
|
---|---|---|
Jarlsberg | 10.45 | 2008-10-07 |
Mascarpone | 32.56 | 2008-10-07 |
Gorgonzola | 15.67 | 2008-10-07 |
SQL Quick Reference From W3Schools
SQL Statement
|
Syntax
|
---|---|
AND / OR
|
SELECT column_name(s)
FROM table_name WHERE condition AND|OR condition |
ALTER TABLE
|
ALTER TABLE table_name
ADD column_name datatype
or
ALTER TABLE table_name
DROP COLUMN column_name |
AS (alias)
|
SELECT column_name AS column_alias
FROM table_name
or
SELECT column_name
FROM table_name AS table_alias |
BETWEEN
|
SELECT column_name(s)
FROM table_name WHERE column_name BETWEEN value1 AND value2 |
CREATE DATABASE
|
CREATE DATABASE database_name
|
CREATE TABLE
|
CREATE TABLE table_name
( column_name1 data_type, column_name2 data_type, column_name2 data_type, ... ) |
CREATE INDEX
|
CREATE INDEX index_name
ON table_name (column_name)
or
CREATE UNIQUE INDEX index_name
ON table_name (column_name) |
CREATE VIEW
|
CREATE VIEW view_name AS
SELECT column_name(s) FROM table_name WHERE condition |
DELETE
|
DELETE FROM table_name
WHERE some_column=some_value
or
DELETE FROM table_name
(Note: Deletes the entire table!!)
DELETE * FROM table_name
(Note: Deletes the entire table!!) |
DROP DATABASE
|
DROP DATABASE database_name
|
DROP INDEX
|
DROP INDEX table_name.index_name (SQL Server)
DROP INDEX index_name ON table_name (MS Access) DROP INDEX index_name (DB2/Oracle) ALTER TABLE table_name DROP INDEX index_name (MySQL) |
DROP TABLE
|
DROP TABLE table_name
|
GROUP BY
|
SELECT column_name, aggregate_function(column_name)
FROM table_name WHERE column_name operator value GROUP BY column_name |
HAVING
|
SELECT column_name, aggregate_function(column_name)
FROM table_name WHERE column_name operator value GROUP BY column_name HAVING aggregate_function(column_name) operator value |
IN
|
SELECT column_name(s)
FROM table_name WHERE column_name IN (value1,value2,..) |
INSERT INTO
|
INSERT INTO table_name
VALUES (value1, value2, value3,....)
or
INSERT INTO table_name
(column1, column2, column3,...) VALUES (value1, value2, value3,....) |
INNER JOIN
|
SELECT column_name(s)
FROM table_name1 INNER JOIN table_name2 ON table_name1.column_name=table_name2.column_name |
LEFT JOIN
|
SELECT column_name(s)
FROM table_name1 LEFT JOIN table_name2 ON table_name1.column_name=table_name2.column_name |
RIGHT JOIN
|
SELECT column_name(s)
FROM table_name1 RIGHT JOIN table_name2 ON table_name1.column_name=table_name2.column_name |
FULL JOIN
|
SELECT column_name(s)
FROM table_name1 FULL JOIN table_name2 ON table_name1.column_name=table_name2.column_name |
LIKE
|
SELECT column_name(s)
FROM table_name WHERE column_name LIKE pattern |
ORDER BY
|
SELECT column_name(s)
FROM table_name ORDER BY column_name [ASC|DESC] |
SELECT
|
SELECT column_name(s)
FROM table_name |
SELECT *
|
SELECT *
FROM table_name |
SELECT DISTINCT
|
SELECT DISTINCT column_name(s)
FROM table_name |
SELECT INTO
|
SELECT *
INTO new_table_name [IN externaldatabase] FROM old_table_name
or
SELECT column_name(s)
INTO new_table_name [IN externaldatabase] FROM old_table_name |
SELECT TOP
|
SELECT TOP number|percent column_name(s)
FROM table_name |
TRUNCATE TABLE
|
TRUNCATE TABLE table_name
|
UNION
|
SELECT column_name(s) FROM table_name1
UNION SELECT column_name(s) FROM table_name2 |
UNION ALL
|
SELECT column_name(s) FROM table_name1
UNION ALL SELECT column_name(s) FROM table_name2 |
UPDATE
|
UPDATE table_name
SET column1=value, column2=value,... WHERE some_column=some_value |
WHERE
|
SELECT column_name(s)
FROM table_name WHERE column_name operator value |
No comments:
Post a Comment